
Small-File Access in Parallel File Systems
Philip Carns, Sam Lang, Robert Ross

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
{carns,slang,rross}@mcs.anl.gov

Murali Vilayannur
VMware Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
muraliv@vmware.com

Julian Kunkel, Thomas Ludwig
Institute of Computer Science

University of Heidelberg
{Julian.Kunkel,Thomas.Ludwig}
@Informatik.uni-heidelberg.de

Abstract—Today’s computational science demands have re-
sulted in ever larger parallel computers, and storage systems have
grown to match these demands. Parallel file systems used in this
environment are increasingly specialized to extract the highest
possible performance for large I/O operations, at the expense of
other potential workloads. While some applications have adapted
to I/O best practices and can obtain good performance on these
systems, the natural I/O patterns of many applications result in
generation of many small files. These applications are not well
served by current parallel file systems at very large scale.

This paper describes five techniques for optimizing small-
file access in parallel file systems for very large scale systems.
These five techniques are all implemented in a single parallel
file system (PVFS) and then systematically assessed on two test
platforms. A microbenchmark and the mdtest benchmark are
used to evaluate the optimizations at an unprecedented scale.
We observe as much as a 905% improvement in small-file create
rates, 1,106% improvement in small-file stat rates, and 727%
improvement in small-file removal rates, compared to a baseline
PVFS configuration on a leadership computing platform using
16,384 cores.

I. INTRODUCTION

Today’s computational science demands have resulted in
ever larger parallel computers, and storage systems for these
computers have likewise grown to match the rates at which
applications generate data. Parallel file systems used in this
environment have become increasingly specialized in an at-
tempt to extract the best possible performance from underlying
storage hardware for computational science application work-
loads. These specialized systems excel at large and aligned
concurrent access, and some applications have recognized
that performing large accesses to multi-gigabyte files is the
best way to leverage parallel file systems. Other applications
continue to use other I/O strategies, with varying degrees of
success. Meanwhile, scientists in new domains are beginning
to use high-performance computing (HPC) resources to attack
problems in their areas of expertise, and these applications
bring new I/O demands.

The results can be seen in recent workload studies. In
practice, many HPC storage systems are used to store many
small files in addition to the large ones. For example, a 2007
study of a shared parallel file system at the National Energy
Research Scientific Computing Center showed that it contained
over 13 million files, 99% of which were under 64 MBytes
and 43% of which were under 64 KBytes [1]. A similar 2007
study at the Pacific Northwest National Laboratory showed

that of the 12 million files on that system, 94% of files were
under 64 MBytes and 58% were under 64 KBytes [2].

Further investigation finds that these files come from a
number of sources, not just one misbehaving application.
Several scientific domains such as climatology, astronomy,
and biology generate data sets that are most conveniently
stored and organized on a file system as independent files.
The following are examples of data sets from each field
(respectively):

• 450,000 Community Climate System Model files with an
average size of 61 MBytes [3]

• 20 million images hosted by the Sloan Digital Sky Survey
with an average size of less than 1 MByte [4]

• up to 30 million files averaging 190 KBytes generated by
sequencing the human genome [5]

Accessing a large number of small files on a parallel file
system shifts the I/O challenge from providing high aggre-
gate I/O throughput to supporting highly concurrent metadata
access rates. The most common technique currently used to
improve metadata rates in file systems is client-side caching.
The trend in HPC systems, however, is toward large numbers
of multicore processors with a meager amount of local RAM
per core. Applications on these systems generally use the
majority of this memory, leaving little room for caching.
Furthermore, traditional techniques for maintaining coherence
and recovering from failures were not designed for use at this
scale.

In this paper we pursue a strategy of hiding latency and
reducing I/O and messaging without using additional resources
on clients. We describe five techniques for improving concur-
rent metadata and small file I/O performance in parallel file
systems: server-driven file precreaton, the readdirplus POSIX
extension, file stuffing, metadata commit coalescing, and eager
data movement for reads and writes. Of those five techniques,
the first two have been previously demonstrated in separate
parallel file system implementations. The remaining three are
also known optimizations, but we apply them in a novel way
to the parallel file system environment. In this paper, all five
are implemented in a single file system (PVFS) and tested in a
consistent environment to assess their relative value. We also
extend the analysis to evaluate behavior at an unprecedented
scale on an IBM Blue Gene/P system.

The paper is organized as follows. In Section II we describe
the relevant aspects of PVFS. In Section III we discuss each of

the techniques used in this work to optimize small I/O access.
In Section IV we evaluate these techniques using microbench-
marks and synthetic workloads in two test environments. In
Section V we summarize related work, and in Section VI we
summarize our findings and suggest avenues of future work.

II. THE PARALLEL VIRTUAL FILE SYSTEM

The Parallel Virtual File System project is a multi-institution
collaborative effort to design and implement a production par-
allel file system for HPC applications at extreme scale [6] [7].
The current PVFS implementation includes support for a vari-
ety of networks through a messaging abstraction [8], including
TCP/IP, InfiniBand, Portals, and Myrinet MX. It is widely used
as the basis for research efforts [9], [10], [11], [12], [13], and
it is deployed in production at a number of sites, including the
Argonne Leadership Computing Facility. This deployment is
discussed in detail in Section IV.

A. PVFS Servers

A PVFS file system consists of a set of servers that provide
metadata and data storage and are accessed by using a custom
network protocol similar to NFSv3 [14], with modifications
tailored to the needs of computational science. Each server
manages its own local storage, with the production version of
PVFS storing data in files in a local directory tree and metadata
in a Berkeley DB database. This approach eliminates commu-
nication related to block allocation, and data is organized into
typed objects similar to those stored on object storage devices.

Current versions of PVFS use a static configuration file to
assign metadata server (MDS) and I/O server (IOS) roles to
specific servers. It also partitions object handles over these
servers, so that handles are unique in the context of a single
PVFS file system. PVFS typically stripes files over all IOSes
but does not store redundant data or additional replicas of
metadata. For a fault-tolerant configuration, storage may be
attached to multiple servers and failover enabled through
packages such as the Linux-HA heartbeat package [15]. In-
dividual directories are stored on a single MDS. Directories
hold names and associated object handles for metadata objects,
which may be distributed across other MDSes. This level of
indirection provides a great deal of flexibility in placement
that is leveraged in this work.

For I/O-intensive deployments, the PVFS file system might
be configured to have one MDS and many IOSes, whereas for
more general-purpose or metadata-intensive deployments all
servers could act as both MDSes and IOSes. For this paper all
testing was performed on PVFS file systems configured such
that all servers are both MDSes and IOSes.

B. PVFS Clients

PVFS clients access the file system through one of a num-
ber of application programmer interfaces (APIs). A provided
Linux VFS module enables access with the standard POSIX
I/O APIs used by UNIX utilities and applications. A user-
space library provides access through what is simply called
the PVFS system interface, and higher-level libraries such as

MPI-IO libraries use this interface to bypass the kernel when
accessing PVFS files.

Regardless of the application interface used, eventually
PVFS clients access objects by first mapping from a pathname
to an object handle via a lookup operation. This lookup is
followed by a getattr that acquires file statistics and the file
distribution. A PVFS file distribution includes a list of objects
holding data for the file and a function that maps file positions
into locations in the distributed objects, similar to a layout in
pNFS. The file distribution does not change once the file is
created (with the exception of stuffed files, discussed below),
so clients may cache this data indefinitely. Because of this
property, once clients obtain this information they can directly
contact IOSes for all subsequent read and write operations.

PVFS clients employ a name space cache and attribute
cache for lookup and getattr operations, respectively. The
primary purpose of these caches is to compensate for metadata
access patterns generated by the Linux kernel VFS. It is
not unusual for the VFS to perform multiple stats or path
lookups of the same file in rapid succession as part of a
single file access. The experiments presented in this paper
were carried out with both the attribute and name space
cache timeouts set to 100 ms. This setting is sufficient to
hide duplicate lookup and getattr operations without risking
excessive state skew across clients. It is conceptually similar
to the readdir_ttl and stat_ttl timeouts employed by
the Ceph file system [16].

III. OPTIMIZING SMALL-FILE ACCESS IN PVFS

Because very little data passes between clients and servers
in small-file access, performance is usually dictated by the
number of individual network or I/O operations necessary to
perform the desired I/O and the degree to which the latency of
these operations can be hidden from the client. In this work we
employ a strategy of hiding latency and reducing messages and
I/O without using additional resources or imposing additional
coordination requirements on clients.

This section describes five optimizations targeted at various
aspects of small-file access. Some of these optimizations
are already provided in PVFS production releases but are
presented for the first time in this work, while others are still
in the prototype phase.

The obvious question remains: What is a small file? In our
case, a small file is any file for which it makes no sense to
impose striping; the optimizations here that deal with creation,
removal, and statistics gathering on small files are applicable
to even multi-megabyte files. In the tests in this paper we used
a 2 MByte strip size. A small-file access, in the context of this
work, is one that can fit in the message buffer along with our
control messages (16 Kbyte in current PVFS releases).

A. Precreating Objects

Files in PVFS are created through a multistep process that is
driven by the client creating the file. The client first creates an
object to store metadata and a collection of objects to store data
by contacting the servers on which these objects will reside.

The metadata object is updated, with a separate operation,
to hold the list of data objects and a distribution function
describing how file positions map into regions of data objects.
A directory entry is then added on the appropriate server. In
the event of an error, the client is responsible for cleaning up
stray objects. If the client fails during the create, objects may
be orphaned, but the name space remains intact.

This approach has two limitations (beyond the possibility
of orphaned objects). First, we must send n+3 messages to
create a file striped over n objects. The latency of these
operations limits the rate at which any one client may create
files and generates a great deal of message traffic if many files
are created. Second, none of the latency of these operations
is hidden from clients. While clients are able to overlap
creation of objects across multiple servers by sending requests
simultaneously, they must wait for all these operations to
complete before updating metadata, and then they must wait
for the metadata update to complete before creating a directory
entry.

Precreating file system objects addresses both of these
concerns. In our implementation of precreation, each MDS
uses a special batch create operation to preemptively contact
IOSes and generate a collection of data objects to be used in
subsequent file creations. These lists of objects are stored on
disk on the MDS. An augmented create operation is used from
clients to request that an MDS perform the first three steps
of PVFS file creation all at once: allocate the local metadata
object, associate preallocated data objects with the new file,
and fill in the distribution function. The client then performs
the directory entry insert as usual. When the list of preallocated
objects runs low on an MDS, it uses the batch create operation
to refill the list in the background.

The end result of our precreate approach is that clients
send only two messages, and because the amount of local
I/O and number of messages for precreating objects is small,
the overhead is quite low. Additionally, the time spent creating
objects is hidden from clients.

Sun Microsystem’s Lustre file system [17] implements a
precreation strategy similar to the algorithm presented in this
work. In particular, metadata servers request that object storage
targets precreate data objects in advance for use in file creation.
This set of objects is replenished asynchronously.

B. “Stuffing” in Parallel File Systems

While precreating objects does substantially improve the
performance of creating files, there is still room for improve-
ment when files will remain small. First, if a file is not going
to grow beyond the size of one strip, then all but the first data
object will remain empty. In this case there was no reason to
allocate those objects at all. Second, these objects complicate
the calculation of file size. PVFS does not track file size on
MDSes; instead, clients communicate with IOSes to gather
partial file sizes and use this data to calculate a final file size.

Inode stuffing is a technique used in local file systems to
store data for small files in the inode rather than allocating
a data block. Our implementation of “stuffing” for PVFS is

in this spirit, and it works for configurations where servers
are working as both MDSes and IOSes. The approach takes
advantage of our precreate optimization. When an MDS re-
ceives an augmented create operation, the server allocates a
local metadata object and a local data object to hold the first
strip of data, then fills in the distribution function, marking the
file with an attribute indicating that the file is stuffed. It returns
the new metadata object handle to the client, who creates the
directory entry. At this point we have a “stuffed” PVFS file,
which is a file with only one of its data objects allocated and
with that object allocated on the same server as the metadata
object.

Clients are augmented to understand this lazy allocation of
data objects. Clients cache distribution information as usual;
and as long as they are operating only on the first strip,
no additional information is needed. If a client attempts to
access beyond the first strip, it first sends an unstuff operation
to the MDS. This forces allocation of the remaining data
objects (using precreated data objects, so no communication is
necessary) if they haven’t already been allocated, and returns
this new list of objects to the client. The client then performs
I/O directly to the IOSes as usual. This capability is designed
to allow us to default to this stuffed storage method, as the
cost of transitioning to a striped file is very low.

Stuffing has two major impacts. First, it significantly reduces
the number of data objects created (as long as files remain
small), and in doing so cuts down on the number of precreate
messages. Further, stat operations no longer need informa-
tion from additional servers to obtain the file size for small
files, significantly reducing communication during statistics
gathering.

The Red Hat Global File System implemented inode stuffing
in the context of a shared disk file system [18]. Each inode in
the file system occupies a full disk block in order to minimize
block sharing. If the file size is small enough, the actual
file contents are stored within this same block in order to
both reduce storage usage and allow retrieval of metadata and
file contents in a single block access. This is similar to the
file stuffing presented in this paper, although our aim was
to minimize client/server messaging rather than shared disk
access costs.

The Panasas file system implements a related mechanism
as well. Small files are mirrored across exactly two devices,
while larger files are striped more widely [19]. This provides
different latency, bandwidth, and space efficiency characteris-
tics for each class of file.

C. Coalescing Metadata Commits

PVFS ensures metadata consistency on disk by requiring
operations that modify metadata be committed to storage be-
fore the clients are notified of completion. In order to provide
this consistency, PVFS performs a flush of Berkeley DB’s dirty
pages (a call to DB→sync()) to disk for each metadata write,
effectively serializing metadata writes.

In I/O-intensive workloads, which perform only intermittent
operations to metadata, this behavior is desirable, as the

BerkeleyDB

Coalesce
Queue

Scheduling

DB->put()

DB->sync()

DB->sync()

Queue

Coalesce?

lo
w

 w
at

er
m

ar
k

metadata write operations

NO

YES

Fig. 1. Metadata coalescing control flow

Client MDS IOS

Write Request
Getattr

Write Response

Payload

Write Completion Ack

Rendezvous I/O

Client MDS IOS

Getattr
Write Request + Payload

Write Completion Ack

Eager I/O

Fig. 2. Eager and rendezvous write examples

objective of an MDS is to minimize the latency of individual
operations. In metadata-intensive workloads, which can per-
form thousands of modifying operations to an MDS at once,
the objective of an MDS becomes maximizing throughput of
the operations it receives.

To achieve both goals under varying workloads, PVFS

MDSes perform a per-operation flush to disk under low
server load, and dynamically coalesce flush operations as the
number of concurrent modifying operations increase, reducing
flush frequency and improving server throughput under highly
intensive metadata workloads.

Metadata commit coalescing in PVFS is built around its
event-driven programming model, which allows for dynamic
scheduling of incoming operations based on system informa-
tion. The MDS places incoming operations that require a flush
to disk in a scheduling queue. The size of this queue acts
as a simple measure of the server’s ability to keep up with
incoming operations. When an operation is removed from the
queue and serviced, a decision is made to perform or delay
the flush of dirty pages based on the size of the queue. If the
size of the queue is below a predefined low watermark value,
the flush is performed, and the operation is marked complete.
If the scheduling queue size is above the low watermark, then
the flush is delayed, and the operation is placed in a separate
coalescing queue for future completion. Once the size of the
coalescing queue grows past a high watermark value, the flush
is performed, and all the delayed operations in the coalescing
queue are marked complete. This approach delays the response
for some operations but generates significantly fewer local I/O
operations. When the number of messages in the scheduling
queue again falls below the low watermark, the coalescing
queue is immediately flushed, returning the system to low
latency mode. Figure 1 shows the control flow of the metadata
coalescing logic.

The PVFS metadata commit coalescing approach is similar
to group commit timers in high-volume database systems [20],
where uncommitted operations are grouped before a commit is
made. The timer approach requires a knowledge of system pa-
rameters to adjust for varying workloads; it will be less prone
to oscillate between low-latency and high-throughput modes
under certain workloads but also less responsive to workload
changes. Our approach targets HPC environments, where high-
volume workloads tend to arrive in bursts, resulting in dramatic
workload changes in short periods of time.

D. Eager I/O

MPI implementations have long provided different mecha-
nisms for moving messages of different sizes. One example
can be found in the original MPICH implementation [21].
Usually at least two modes are provided: a rendezvous mode
for large messages and an eager mode for small messages.
In rendezvous mode, the receiver must respond with an
acknowledgment before data is sent, ensuring that space is
available on the receiver for the incoming data. In eager mode,
the sender immediately pushes data to the receiver, minimizing
latency.

PVFS is designed primarily for large data access and
therefore uses a combination of a rendezvous-like mode and
packetization that enables pipelining of I/O on servers. For
small I/O, PVFS switches to a mode similar to the eager
mode in MPI. This is illustrated in Figure 2. In both cases the
client begins by retrieving attributes (such as datafile layout)

with a getattr request. In the rendezvous case, the client
and server then handshake before transmitting the payload.
The server completes the rendezvous write by sending an
acknowledgment. In the eager case, however, the data is opti-
mistically included in the write request in order to eliminate
a round-trip message exchange. Eager read operations work
in much the same fashion, except that data is included in the
acknowledgment rather than the request.

PVFS places an upper bound on the maximum size of
unexpected messages (new incoming requests) to servers. This
dictates the transition point between rendezvous and eager
mode by bounding the amount of data that can be packed
into a write request. The same size limit is used for read
acknowledgments as well.

E. POSIX Extensions for Directory Access

In some cases client interfaces limit performance by re-
stricting the amount of work that a client can express in one
operation. Directory access is a good example: in most cases
a directory read is followed by stat operations on each of
the items in the directory, but the POSIX interface forces the
directory read to be separated from the statistics gathering,
and forces each stat operation to be performed separately.

The HECEWG working group has proposed POSIX I/O API
extensions designed to improve performance in HPC environ-
ments [22], [23]. One new call, readdirplus, allows an
application programmer to combine the directory read request
with a request for statistics on each of the objects in the
directory. Given OS support, this provides the underlying file
system with the option of combining these operations for better
performance.

PVFS provides an interface for readdirplus in the client
library. It is implemented by first performing a readdir request
to gather a list of objects on which statistics must be gathered.
Next, listattr requests are sent to MDSes holding relevant
objects (one request per server). These obtain all metadata for
directories and stuffed files, as well as relevant data objects
for striped files. Finally, a second round of listattr requests is
sent to IOSes with relevant objects (one request per server) to
obtain object sizes that are used to calculate file sizes.

This optimization is obviously relevant only to applications
performing directory listings on large directories, and it is
useful only if applications have access to the appropriate
call. While we wait for these proposed extensions to be
adopted by the wider community, PVFS provides a special
pvfs2-lsplus utility that takes advantage of this interface.

The Chirp file system has implemented a getlongdir
operation [24] to gather readdir results and stat information in
a single call that is similar to the proposed readdirplus
POSIX extension.

IV. EVALUATION

In this section we present the results of testing on two plat-
forms. On the first, a Linux cluster, we study the performance
of our optimizations at relatively small scale while varying
number of clients. On the second platform, an IBM Blue

Gene/P system, we examine performance at large scale with
a varying number of servers.

A. Linux Cluster

All experiments in this section were conducted using 22
identically configured Linux nodes running kernel version
2.6.20. Each node contains two dual-core Opteron 2220 pro-
cessors, 4 GBytes of RAM, and four 80 GByte SATA hard
drives. The hard drives are accessed via the XFS file system
on top of a software RAID 0. The nodes are interconnected via
a 10 GByte/s Myrinet network. PVFS includes native support
for the Myrinet MX protocol, but at the time of this writing the
implementation was not yet compatible with server-to-server
messaging as required by the precreate strategy outlined in
Section III-A. All tests were therefore conducted with the
TCP/IP protocol. Eight of the nodes were configured to act
as PVFS file servers, and the remaining 14 were configured
to act as PVFS clients.

A microbenchmark was used to isolate the impact of each
optimization strategy on specific file system operations. The
microbenchmark uses MPI to orchestrate file access from
multiple application processes. The file system operations can
be carried out by using MPI-IO, POSIX, or PVFS library
interface functions. In this study we used the POSIX API,
because it is the most prevalent interface for uncoordinated
access to small files.

Each application process in the microbenchmark executes
the following test phases: (1) create a unique subdirectory, (2)
create N files, (3) read subdirectory and stat each file, (4) write
M bytes to each file, (5) read M bytes from each file, (6) read
subdirectory and stat each file, (7) close each file, (8) remove
each file, and (9) remove subdirectory.

Processes are synchronized around each test phase in order
to calculate an aggregate rate for each type of operation. All
tests reported in this section were carried out with the number
of files per process (N) set to 12,000 and the number of bytes
written and read (M) set to 8 KBytes.

1) Creating and Removing Files: Figure 3 shows create
rates and remove rates with our optimizations. When we
compare the baseline create result to those with precreate, we
see as much as a 19% improvement in performance. However,
we would expect the impact of this optimization to increase
with increasing numbers of servers, and we will observe this
in the following section. This optimization also makes our
stuffing implementation possible.

The stuffing optimization provides a further increase in per-
formance over the precreate optimization. However, it appears
that we have hit a peak rate per server of approximately
188 creates per second. This is likely due to the serialization
of Berkeley DB synchronization operations. Also note that
at least one server must host multiple subdirectories once
the number of clients exceeds the number of servers. This
contributes to the scalability limit that is reached at eight
clients.

When we enable the coalescing optimization on top of these
other optimizations, we see a further jump in performance as

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Clients

create (stuffing/coalesce)
create (stuffing)

create (precreate)
create (baseline)

(a) Creation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Clients

remove (stuffing/coalesce)
remove (stuffing)

remove (baseline)

(b) Removal

Fig. 3. Linux cluster: File creation and removal rates

Berkeley DB synchronization operations are combined. We
chose a high watermark of 8 and a low watermark of 1.
Preliminary testing indicated these to be optimal values for
this configuration. With this optimization it is apparent that we
have not hit a peak create rate with just 14 clients. Overall, the
set of optimizations provides as high as a 139% performance
improvement over the baseline configuration.

At this time we have not implemented any sort of bulk
object removal, so there is no equivalent to precreating for file
removal. We see the largest gain at this scale when stuffing is
enabled, because clients need to remove only one data object
per file (the server does not do this automatically) rather than n
data objects. Again we see that without coalescing we appear
to have hit a maximum rate per server, in this case 150 file
removes per second; and similar to the create case we see that
coalescing enables the servers to improve their rate beyond
this point for increasing numbers of clients.

To better understand the impact of Berkeley DB on our
performance, we also ran create tests with servers using a
tmpfs file system for underlying storage. Assuming a zero cost
for tmpfs writes, we found that Berkeley DB synchronization
accounts for approximately 70% of the remaining time after
our optimizations were applied. Eliminating this synchroniza-
tion cost allowed us to reach a rate of 7,400 creates per second

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 2 4 6 8 10 12 14

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Clients

write (eager)
write (baseline)

read (eager)
read (baseline)

Fig. 4. Linux cluster: Eager I/O

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 2 4 6 8 10 12 14

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Clients

readdir and stat (empty files, stuffing)
readdir and stat (populated files, stuffing)

readdir and stat (empty files, baseline)
readdir and stat (populated files, baseline)

Fig. 5. Linux cluster: Readdir and stat with stuffing

at 14 clients. This indicates that Berkeley DB, or our current
use of it, is the major remaining performance bottleneck for
creates.

As noted in Section III-B, the stuffed files would have to
be “unstuffed” if a client attempted to write data beyond the
first strip of the file. Although this paper does not deal with
larger file sizes, we did instrument the unstuff operation on
larger write workloads to measure this overhead. We found the
unstuff to impose a one-time cost of approximately 4.1 ms.

The microbenchmark results in Figure 3 focus on measuring
aggregate metadata rate rather than single-operation latency.
However, we include a single-client configuration as the first
data point, which is analogous to a sequential single-client
workload. From this measurement we can see that precreation,
stuffing, and metadata coalescing improve sequential operation
latency as well as aggregate operation rates.

2) Eager I/O Optimizations: Figure 4 shows the effect of
our eager I/O optimizations on small reads and writes. We
achieve better scalability in the eager message case for two
reasons: fewer messages are passed over the wire, and server-
side processing overhead is less. The performance of both
reads and writes tails off slightly as the number of clients
is increased, but at this scale the servers are not yet fully satu-
rated. At 14 clients this results in a 22% improvement in write

TABLE I
LINUX CLUSTER: LS TIMES FOR 12,000 FILES

Utility Baseline, s Stuffing, s

/bin/ls -al 9.65 8.53
pvfs2-ls -al 6.19 4.85

pvfs2-lsplus -al 2.72 2.65

performance and a 33% improvement in read performance.
3) Large Directory Listings: Figure 5 readdir and stat

performance when clients use the VFS interface. The results
show rates for both empty files and populated 8 KByte files.
File stuffing has a significant impact on stat operations
because the VFS client is able to obtain file size in the
same message used to obtain other statistics. Of note is the
difference in performance between empty files and very small
files. In Section III-A we described the mechanism by which
PVFS allocates data objects as one step of file creation. Servers
perform this data object allocation by inserting an appropriate
entry into its underlying metadata database. Flat files are used
to store file contents, but these are not allocated until data
is first written to the file. If a client requests the size of
an empty data object, the server responds by detecting that
the underlying file does not yet exist. If the data object is
populated, however, the server responds by caching a reference
to the underlying file and performing an fstat to retrieve its
size. By measuring the time required on an XFS file system to
attempt to open 50,000 nonexistent files and then measuring
the time required to successfully open and fstat the same
number of files, we see that these two operations require an
average of 0.187 seconds and 0.660 seconds respectively. This
discrepancy in cost transfers directly to the cost of PVFS stat
operations.

The impact of the readdirplus optimization is evident in
interactive access to the file system through the ls utility.
The standard GNU ls does not include readdirplus
support, but PVFS provides file-system-specific utilities called
pvfs2-ls and pvfs2-lsplus for listing PVFS directo-
ries. The former is equivalent to ls but uses the PVFS system
interface. The latter goes one step further by also making use
of the readdirplus API.

Table I shows the execution time of all three directory
listing utilities for a directory containing 12,000 files. The
pvfs2-ls achieves a 36% speedup simply by utilizing
the native PVFS library to bypass the Linux kernel. The
pvfs2-lsplus utility achieves an additional 128% speedup.
The second column indicates that all three also benefit from
the reduction in messaging provided by stuffing of small files.

B. IBM Blue Gene/P

The experiments in this section were conducted on In-
trepid, an IBM Blue Gene/P (BG/P) system at the Argonne
Leadership Computing Facility (ALCF) at Argonne National
Laboratory. In its final configuration, the ALCF BG/P will
consist of 40,960 compute nodes in 40 racks providing 80
TBytes of RAM and a peak performance of 556 Teraflops.

Fig. 6. IBM Blue Gene/P I/O system

Access to 17 DataDirect Networks S2A9900 SANs will be
provided by 136 file servers, with a total of 4.3 PBytes of
storage and a peak I/O rate of approximately 78 GBytes/s.

Figure 6 illustrates the architecture of the I/O system on the
ALCF BG/P. I/O forwarding is used to minimize the number of
compute processes presented to the file system. Each set of 64
compute nodes (CNs) forwards system calls to an intermediate
I/O node (ION) via a custom tree network. A daemon on
the ION known as the CIOD (Control and I/O Daemon) is
responsible for accepting system call requests and invoking
them on behalf of the compute node kernel. This is the same
approach as used in the previous Blue Gene/L systems [25].
Each ION has the same specifications as a CN, except that
it runs a Linux kernel and possesses an additional network
connection. A commodity switched 10 Gb/s Myrinet network
connects all IONs to all file servers, while a point-to-point
InfiniBand network connects 8 file servers to each enterprise
SAN. Each SAN contains 480 1 TByte disk drives.

At the time of writing, 4,096 compute nodes, 32 file servers,
and 4 S2A9900 Data Direct Networks storage systems were
available for our testing. Each CN contained a quad core
PowerPC 450 processor and 4 GBytes of RAM running a
custom IBM operating system, while each file server contained
two dual core Opteron 2216 processors and 8 GBytes of RAM
running Linux kernel version 2.6.16. A separate XFS file
system was used on each SAN LUN. PVFS server daemons
were run on each file server, and PVFS client software was
installed on each I/O node.

Application processes were executed on all four cores of
each of the 4K CNs available for our experiments. Operations
from these application processes were forwarded to 64 IONs,
which serve as the PVFS clients in the system. We believe
that many applications will run in this mode, and this gives
us the best picture of the impact of our optimizations on large
scale applications.

1) Small File Metadata Operations: Figure 7 shows the
create and remove operation rates of 16K application processes
on BG/P, with and without our optimizations. We held the
number of application processes constant while varying the
number of PVFS servers. In the unoptimized cases, IONs
must send n+3 messages to create and n+2 messages to
remove files, where n is the number of servers. This means

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Servers

create (optimized)
create (baseline)

remove (optimized)
remove (baseline)

Fig. 7. 16,384 processes on BG/P: create and remove

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Servers

readdir and stat (empty files, optimized)
readdir and stat (empty files, baseline)

readdir and stat (populated files, optimized)
readdir and stat (populated files, baseline)

Fig. 8. 16,384 processes on BG/P: readdir and stat

that as we increase the number of servers, each server is
still receiving approximately the same number of messages.
In the baseline configuration the servers are also serializing
synchronization of modifications to the Berkeley DB. These
two factors together mean that our rates for create and remove
are low for a single server and do not improve significantly
as we increase the number of servers.

For the optimized cases, we see that adding servers does
substantially improve our overall rate, and we see no indication
of hitting a peak rate with 16K application processes. Because
we are generating only a single data object per file, adding
additional servers means less work per server in terms of both
messaging and metadata access. The number of messages is
reduced in both the create and remove case, but the change
is more significant for create operations. The reason is that
the stuffing optimization cuts the number of messages from
IONs to two: one to create the metadata and data objects on
a single server, and one to add the new directory entry to the
parent directory. In the optimized remove case the ION must
still perform three separate operations: removing the metadata
object, removing the data object, and removing the directory
entry. Both create and remove benefit from sync coalescing in
order to optimize metadata access for throughput rather than
latency.

TABLE II
16,384 PROCESSES ON BG/P: MDTEST MEAN OPERATIONS/SECOND

Process Baseline Optimized Percent Improvement

Directory creation 12163.831 40799.785 235
Directory stat 50402.179 60543.205 20

Directory removal 9778.694 16329.199 67
File creation 1823.450 18324.970 905

File stat 4489.135 54148.693 1106
File removal 1288.583 10656.798 727

Figure 8 shows results of readdir and stat operations
for both empty files and populated 8 KByte files on BG/P.
Without optimizations, clients must send n+1 operations per
stat operation in order to retrieve the metadata for the
file and then calculate the file size. We see that the overall
operation rate goes down as we increase the number of servers
and thus increase the number of messages that must be sent
and received.

With optimizations, clients need send only 1 operation per
stat to obtain all file statistics, as long as files remain stuffed
as in this test. The impact of this change is apparent in the
graph, with operations on small files improving by as much
as a factor of 2 (at 16 servers) and performance generally
improving as we increase the number of servers. The property
discussed in Section IV-A3, related to stat operations on
empty files taking significantly less time on PVFS file systems
than on files with data in them, appears to be a factor in the
optimized runs. However, this property alone does not explain
the dropoff in performance after 16 servers; we would expect
this additional I/O cost to appear uniformly over the range of
servers tested. We intend to explore this behavior more fully.
Also note that the CN operating system on Blue Gene does
not have access to an API to allow use of the readdirplus
extension, which would help to mitigate stat overhead for this
case.

2) The mdtest Benchmark: The mdtest benchmark is a
commonly used synthetic test of metadata operations. Table
II shows the mean operation rates reported by mdtest version
1.7.4 with 16,384 client processes and 32 servers on the
BG/P system. The experiment was performed with 10 files per
process and unique subdirectories for each process (similar
to the microbenchmark parameters). At this scale we see a
significant improvement in directory operations due to the
metadata coalescing optimization. The file operations benefited
from both metadata coalescing and file stuffing to achieve an
even greater increase in operation rate.

Both the mdtest results in Table II and the microbenchmark
results in Figures 7 and 8 include file creation, removal,
and stat rates. The mdtest benchmark reports a much higher
rate than our microbenchmark code in all three cases. We
believe that this discrepancy on Blue Gene is due primarily
to a subtle difference in timing methodology between the two
benchmark programs. Algorithm 1 shows the method used in
the microbenchmark, which synchronizes using a barrier and
records the time to complete operations independently on each

Algorithm 1 microbenchmark

1: MPI Barrier()
2: t1 = MPI Wtime()
3: for all files do
4: create file
5: t2 = MPI Wtime()
6: MPI Allreduce((t2-t1), time, MPI MAX)

Algorithm 2 mdtest

1: MPI Barrier()
2: t1 = MPI Wtime()
3: for all files do
4: create file
5: MPI Barrier()
6: t2 = MPI Wtime()
7: if rank == 0 then
8: time = t2 -t1

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 5 10 15 20 25 30 35

To
ta

l O
pe

ra
tio

ns
 /

S
ec

on
d

Servers

write (optimized)
write (baseline)

read (optimized)
read (baseline)

Fig. 9. 16,384 processes on BG/P: I/O

process. The largest of these values is used as the total elapsed
time.

The mdtest code uses Algorithm 2, which synchronizes with
a barrier as well but performs timing only on rank 0. With
tens of thousands of processes, there is potential for variance
in the amount of time needed for an individual process to exit
a barrier. If rank 0 is late leaving the first barrier, for example,
then Algorithm 2 will report a smaller elapsed time because it
utilizes timing information only from that process. Given the
relatively short run time of our tests, even a small delay could
have a measurable impact on resulting rates. We expect that
the results of mdtest and the microbenchmark would converge
if executed with a sufficiently large file set to amortize the
effects of MPI synchronization.

3) Small-File I/O: Figure 9 shows the impact of our
optimizations on small-file I/O on the BG/P. These are the
highest operation rates seen in our study, reaching nearly
80K writes/sec for eager read operations. The optimizations
yielded as much as a 77% improvement in write performance

and a 115% improvement in read performance in the largest
configuration.

To help understand these results, we contacted colleagues
working on the I/O forwarding system for BG/P. In the
process of developing a successor to the ZOID I/O forwarding
system [26] for BG/P, Iskra has been studying the performance
of IONs and the BG/P tree network. By testing POSIX read
and write operations to /dev/zero and /dev/null, he
found that 64 CNs could drive 8 Kbyte I/O operations through
the tree and CIOD at approximately 12K to 14K operations
per second. Since we are seeing approximately 1.2K ops/sec
moving through our IONs, the tree and CIOD are not the limit
on our operation rate.

To better understand the performance seen in this experi-
ment, we performed additional testing using 256 processes on
a single ION with 8 PVFS servers for the optimized case. With
this combination the server is unlikely to be overloaded, as the
ION has only one 10Gbit/s link. Running our microbenchmark
to perform I/O to 100 files per process, the ION attained a rate
of approximately 1,130 operations per second for both reads
and writes, with optimizations. This matches closely with the
maximum rate seen in the larger experiments, leading us to
believe that we are hitting the maximum rate at which an
ION can generate requests with the current software in the
optimized read case. Further study is necessary to determine
why optimized writes in the large-scale test did not match the
results of the small-scale run.

V. RELATED WORK

Devulapalli and Wyckoff focused specifically on strate-
gies for speeding PVFS file creation [27]. The three prin-
cipal strategies examined were compound operations, leased
handles, and datafile precreation. Datafile precreation was
performed by clients, in contrast to our strategy in which
precreation was performed by metadata servers to minimize
client messaging and state.

Kuhn, Kunkel, and Ludwig observed that not all applica-
tions require complete metadata for small-file workloads [28].
They therefore implemented a directory-level hint in PVFS
to eliminate metadata objects and reference data files directly
from directory entries. This was shown to speed file creation,
stat, and remove operations.

In earlier research, we explored the use of intelligent servers
and collective communication to improve metadata latency
in PVFS [29] [30]. One goal of that work was to offload
work from clients by allowing the servers to perform complex
file system operations on their behalf. The servers also used
collective communication algorithms similar to those found in
message-passing libraries in order to structure communication
more efficiently. Both of these techniques are complementary
to work presented in this paper. The experimental results
examined metadata performance on file systems with hundreds
of servers but only a limited number of clients, however.

Several recent parallel I/O studies have included some
aspects of concurrent metadata performance. Welch et al.
measured the file creation, utime, and stat rates for a Panasas

file system with one metadata server and up to 15 client
processes [19]. Cope et al. compared the file creation rates for
PVFS, GPFS, Lustre, and TerraFS using a testbed with two
data servers and up to 12 client processes [31]. Yu, Vetter, and
Oral measured the time necessary to create both shared and
independent files on Lustre with up to 512 client processes on
the Jaguar system at Oak Ridge National Laboratory [32].

VI. CONCLUSIONS

As new science teams adopt computational science as part
of their discovery process, it becomes ever more important
that parallel file systems cater to less “ideal” access patterns.
In this work we have pursued a strategy of enabling a greater
degree of latency hiding and reducing number of messages
and I/O operations as a way of improving the performance
of a parallel file system under a load with many small
and independent I/O operations. We have described specific
techniques that implement this strategy with roots in a variety
of fields, including message passing libraries, databases, local
file systems, and parallel file systems.

We studied the performance of these techniques in a con-
sistent environment by implementing them all in the PVFS
parallel file system and evaluating PVFS in a modest cluster
system and on a large-scale leadership platform. Using a cus-
tom microbenchmark and the mdtest benchmark, we found that
our optimizations result in as much as a 905% improvement
in smalls-file create rates, 1,106% improvement in small-file
stat rates, and 727% improvement in small-file removal rates,
as compared to a baseline PVFS configuration on a leadership
computing platform. Further, the stuffed file approach used
here can transparently move to a striped distribution, allowing
this optimization to be applied by default without significant
performance degradation. Our testing confirms the viability
of these techniques in the context of large-scale computing
systems. Further, we believe this work to be the first that
examines small I/O performance for HPC systems at this scale.

All the testing performed here relied upon per-process sub-
directories to avoid contention of directories, which are stored
on single servers in PVFS. With Patil et al. we are investigating
distributed directory support in PVFS to address this potential
bottleneck [33]. The testing performed as part of this work
generated new questions about how these optimizations impact
the performance of PVFS, particularly in conjunction with I/O
forwarding and at very large scale. Understanding the behavior
of complex I/O systems is becoming increasingly difficult
as we build systems with ever larger component counts and
additional layers of system software. We are investigating
novel techniques to capture information on storage system
behavior and extract knowledge on system behavior from this
data to enable more effective performance understanding and
debugging for storage systems at scale.

ACKNOWLEDGMENTS

We thank the PVFS community for their efforts in making
PVFS a successful part of HPC storage systems. W. Allcock,
K. Harms, A. Cherry, S. Coghlan, and P. Beckman of the

Argonne Leadership Computing Facility were instrumental in
enabling our testing on the Blue Gene/P system. We are also
thankful to Kamil Iskra of Argonne National Laboratory for
his help in understanding the performance characteristics of
the Blue Gene/P I/O nodes and tree network. This work was
supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under
Contract DE-AC02-06CH11357.

REFERENCES

[1] Petascale Data Storage Institute, “NERSC file system statistics,”
World Wide Web electronic publication, 2007. [Online]. Available:
http://pdsi.nersc.gov/filesystem.htm

[2] E. Felix, “Environmental Molecular Sciences Laboratory
file system statistics,” 2007. [Online]. Available: http://pdsi-
scidac.org/fsstats/index.html

[3] A. Chervenak, J. M. Schopf, L. Pearlman, M.-H. Su, S. Bharathi,
L. Cinquini, M. D’Arcy, N. Miller, and D. Bernholdt, “Monitoring
the Earth System Grid with MDS4,” in E-SCIENCE ’06: Proceedings
of the Second IEEE International Conference on e-Science and Grid
Computing. Washington: IEEE Computer Society, 2006, p. 69.

[4] E. H. Neilsen Jr., “The Sloan Digital Sky Survey data archive server,”
Computing in Science and Engineering, vol. 10, no. 1, pp. 13–17, 2008.

[5] J. K. Bonfield and R. Staden, “ZTR: A new format for DNA sequence
trace data,” Bioinformatics, vol. 18, no. 1, pp. 3–10, 2002.

[6] “The Parallel Virtual File System,” http://www.pvfs.org.
[7] R. Latham, N. Miller, R. B. Ross, and P. H.

Carns, “A next-generation parallel file system for Linux
clusters,” LinuxWorld Magazine, January 2004. [Online]. Avail-
able: http://www.pvfs.org/documentation/papers/linuxworld-JAN2004-
PVFS2.pdf

[8] P. H. Carns, W. B. L. III, R. Ross, and P. Wyckoff, “BMI: A network
abstraction layer for parallel I/O,” in Proceedings of IPDPS ’05, April
2005.

[9] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and P. Sadayappan,
“Integrating parallel file systems with object-based storage devices,” in
Proceedings of Supercomputing, November 2007. [Online]. Available:
http://www.osc.edu/ pw/papers/devulapalli-pvfs-osd-sc07.pdf

[10] A. Ching, R. Ross, W. keng Liao, L. Ward, and A. Choudhary, “Non-
contiguous locking techniques for parallel file systems,” in Proceedings
of Supercomputing, November 2007.

[11] Y. Zhu and H. Jiang, “Ceft: A cost-effective, fault-tolerant
parallel virtual file system,” Journal of Parallel and Distributed
Computing, vol. 66, pp. 291–306, February 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1140805

[12] W. Yu, S. Liang, and D. K. Panda, “High performance support of
Parallel Virtual File System (PVFS2) over Quadrics,” in International
Conference on Supercomputing (ICS ’05), 2005, pp. 323–331. [Online].
Available: http://www.cse.ohio-state.edu/ liangs/paper/yuw-ics05.pdf

[13] D. Hildebrand and P. Honeyman, “Exporting storage systems in a
scalable manner with pNFS,” in 13th NASA Goddard Conference on
Mass Storage Systems and Technologies, April 2005.

[14] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz, “NFS version 3: Design and implementation,”
in USENIX Summer, 1994, pp. 137–152. [Online]. Available:
citeseer.ist.psu.edu/pawlowski94nfs.html

[15] A. Robertson, “Linux-HA heartbeat design,” in Proceedings of the 4th
Annual Linux Showcase and Conference, October 2000.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in OSDI
’06: Proceedings of the 7th Symposium on Operating Systems Design
and Implementation. Berkeley, CA, USA: USENIX Association, 2006,
pp. 307–320.

[17] “Lustre file system,” http://www.sun.com/software/products/lustre/.
[18] S. R. Soltis, T. M. Ruwart, G. M. Erickson, K. W. Preslan, and M. T.

O’Keefe, “The global file system,” in High Performance Mass Storage
and Parallel I/O: Technologies and Applications, H. Jin, T. Cortes, and
R. Buyya, Eds. New York: IEEE Computer Society Press and Wiley,
2001, ch. 23, pp. 344–363.

[19] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the Panasas parallel
file system,” in FAST’08: Proceedings of the 6th USENIX Conference on
File and Storage Technologies. Berkeley, CA: USENIX Association,
2008, pp. 1–17.

[20] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett, and A. Reuter,
“Group commit timers and high volume transaction systems,” in Pro-
ceedings of the 2nd International Workshop on High Performance
Transaction Systems, 1987, pp. 301–329.

[21] E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard,” Parallel
Computing, vol. 22, pp. 789–828, 1996.

[22] “POSIX HEC Extensions Project,” http://www.pdl.cmu.edu/posix/.
[23] G. Grider, L. Ward, R. Ross, and G. Gibson, “A

business case for extensions to the POSIX I/O API for
high end, clustered, and highly concurrent computing,”
http://www.opengroup.org/platform/hecewg/uploads/40/10891/POSIX-
IO-API-Business-case-HEC-ggrider.pdf, 2006.

[24] D. Thain and C. Moretti, “Efficient access to many small files in a
filesystem for grid computing,” in 2007 8th IEEE/ACM International
Conference on Grid Computing, 2007, pp. 243–250.

[25] J. J. Ritsko, I. Ames, S. I. Raider, and J. H. Robinson, “Blue Gene,”
IBM Journal of Research and Development, vol. 49, March/May 2005.

[26] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-
forwarding infrastructure for petascale architectures,” in Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Salt Lake City, UT, Feb. 2008, pp. 153–162.

[27] A. Devulapalli and P. Wyckoff, “File creation strategies in a distributed
metadata file system,” in Proceedings of IPDPS’07, March 2007.

[28] M. Kuhn, J. M. Kunkel, and T. Ludwig, “Directory-based metadata
optimizations for small files in PVFS,” in Euro-Par, 2008, pp. 90–99.

[29] P. H. Carns, “Achieving scalability in parallel file systems,” Ph.D.
dissertation, Clemson University, May 2005.

[30] P. H. Carns, B. W. Settlemyer, and I. Walter B. Ligon, “Using server-to-
server communication in parallel file systems to simplify consistency and
improve performance,” in SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. Piscataway, NJ: IEEE Press, 2008, pp.
1–8.

[31] J. Cope, M. Oberg, H. Tufo, and M. Woitaszek, “Shared parallel
file systems in heterogeneous Linux multi-cluster environments,” in
Proceedings of the 6th LCI International Conference on Linux Clusters:
The HPC Revolution.

[32] W. Yu, J. S. Vetter, and S. Oral, “Performance characterization and
optimization of parallel I/O on the Cray XT,” in IPDPS, 2008, pp. 1–11.

[33] S. V. Patil, G. A. Gibson, S. Lang, and M. Polte, “GIGA+: Scalable
directories for shared file systems,” in Petascale Data Storage Workshop
(in Conjunction with SC07), Nov. 2007.

